Fact-checking has gained increasing attention due to the widespread of falsified information. Most fact-checking approaches focus on claims made in English only due to the data scarcity issue in other languages. The lack of fact-checking datasets in low-resource languages calls for an effective cross-lingual transfer technique for fact-checking. Additionally, trustworthy information in different languages can be complementary and helpful in verifying facts. To this end, we present the first fact-checking framework augmented with cross-lingual retrieval that aggregates evidence retrieved from multiple languages through a cross-lingual retriever. Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage. The goal for X-ICT is to learn cross-lingual retrieval in which the model learns to identify the passage corresponding to a given translated title. On the X-Fact dataset, our approach achieves 2.23% absolute F1 improvement in the zero-shot cross-lingual setup over prior systems. The source code and data are publicly available at https://github.com/khuangaf/CONCRETE.


翻译:由于伪造信息的广泛性,对事实的检查越来越受到越来越多的关注。大多数事实检查方法都侧重于仅因为其他语言的数据稀缺问题而以英语提出的索赔。缺乏低资源语言的实况核对数据集要求一种有效的跨语言传输技术,以便进行事实检查。此外,不同语言的可靠信息可以相互补充,并有助于核实事实。为此,我们提出了第一个事实检查框架,通过跨语言检索器将从多种语言检索的证据汇总起来,从而强化了跨语言检索框架。鉴于缺少具有类似索赔查询的跨语言信息检索数据集,我们用我们提议的跨语言反克隆任务(X-ICT)来培训检索器,这是一种自我监督的算法,通过翻译一段段落的标题来创造培训实例。 X-ICT的目标是学习跨语言检索方法,让模型学习如何识别与某个翻译的标题对应的通过。在X-Fact数据集中,我们的方法在前系统上零语言交叉设置中实现了2.23%的绝对F1改进。 http://CONFIFF/SONASUD数据是公开的源码和数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年11月27日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员