Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER$^2$, a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER$^2$ significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.
翻译:混合解答( HQA) 的目的是解答关于不同数据的问题,包括表格和与表格单元格相连的表格和段落。多元数据可以向 HQA 模型提供不同的颗粒性证据,例如, 列、 行、 单元格和链接。 常规 HQA 模型通常检索粗略或细细微的混合解答证据来解释答案。 比较起来, 我们发现粗略的份数证据更容易检索, 但对理性者的贡献较少, 而细微的分辨证据正好相反。 为了维护不同颗粒证据的优势并消除其劣势, 我们提议了 MuGER$2$, 一种多毛杰尔证据检索和解释方法。 在证据检索中, 设计了一个统一的检索器, 以从混杂数据中学习多份或细微细细微的样本性证据来解释答案。 在回答推理中, 我们建议了一种证据选择器, 以根据所学的多质证据为根据的精确度证据来引导读者的细微辨识读者。 混合QA 数据集的实验结果显示, MuGER$2$2$ 大大提升了 HQA 的性分析。