In this study, the effect of ferrite grain size on the mechanical properties and dislocation behavior of dual-phase (DP) steel is investigated using dislocation-based crystal plasticity finite element analysis. DP steel, composed of a soft ferritic phase and a hard martensitic phase, shows mechanical properties that are significantly influenced by ferrite grain size. The mechanism underlying this grain size effect is clarified by analyzing the partitioning and distribution of stress, strain, and dislocations in each phase. Three models with the same volume fraction of martensitic phase but different ferrite grain sizes are subjected to tensile loading. Interestingly, even though only the ferrite grain size is changed, the stress in the martensitic phase exhibited a notable dependence on ferrite grain size. This can be explained as follows. Geometrically necessary (GN) dislocations accumulate on the ferrite side of the ferrite-martensite grain boundary, and the grain boundary occupancy per unit area increases as the ferrite grain size decreases. As a result, smaller ferrite grain sizes make the ferritic phase less deformable owing to the effect of GN dislocations, shifting more deformation to the martensitic phase. This behavior is confirmed by the more uniform strain distribution and partitioning observed with decreasing ferrite grain size. As the martensitic phase takes on greater deformation, the statistically stored dislocation density in the martensitic phase becomes ferrite grain size dependent, which in turn leads to the observed grain size dependence of stress in the martensitic phase.
翻译:暂无翻译