We establish a generic upper bound ExpTime for reasoning with global assumptions (also known as TBoxes) in coalgebraic modal logics. Unlike earlier results of this kind, our bound does not require a tractable set of tableau rules for the instance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that potentially avoids building the entire exponential-sized space of candidate states, and thus offers a basis for practical reasoning. This algorithm still involves frequent fixpoint computations; we show how these can be handled efficiently in a concrete algorithm modelled on Liu and Smolka's linear-time fixpoint algorithm. Finally, we show that the upper complexity bound is preserved under adding nominals to the logic, i.e. in coalgebraic hybrid logic.
翻译:我们为以全球假设(又称Tboxes)推理的煤基模型逻辑建立了一个通用的上限约束时间。 与先前的这种类型的结果不同, 我们的界限并不需要一系列可移动的表层规则, 以便结果适用于范围更广的逻辑。 例如Presburger模式逻辑,它扩展了分级模式逻辑,在继承者人数上存在着线性不平等,以及概率性模式逻辑,在概率性上存在多义性不平等。 我们用一种类型的消除算法建立了理论上限约束。 我们还提供了一种全球缓冲算法, 有可能避免建立候选国家的整个指数大小空间, 从而提供了实际推理的基础。 这种算法仍然涉及频繁的固定点计算; 我们展示了如何在仿照刘和斯莫尔卡的线性时间固定算法的具体算法中有效地处理这些问题。 最后, 我们显示, 上层的复杂度在逻辑中添加符号时, 也就是在煤层混合逻辑中保留了。