We establish a generic upper bound ExpTime for reasoning with global assumptions (also known as TBoxes) in coalgebraic modal logics. Unlike earlier results of this kind, our bound does not require a tractable set of tableau rules for the instance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that potentially avoids building the entire exponential-sized space of candidate states, and thus offers a basis for practical reasoning. This algorithm still involves frequent fixpoint computations; we show how these can be handled efficiently in a concrete algorithm modelled on Liu and Smolka's linear-time fixpoint algorithm. Finally, we show that the upper complexity bound is preserved under adding nominals to the logic, i.e. in coalgebraic hybrid logic.


翻译:我们为以全球假设(又称Tboxes)推理的煤基模型逻辑建立了一个通用的上限约束时间。 与先前的这种类型的结果不同, 我们的界限并不需要一系列可移动的表层规则, 以便结果适用于范围更广的逻辑。 例如Presburger模式逻辑,它扩展了分级模式逻辑,在继承者人数上存在着线性不平等,以及概率性模式逻辑,在概率性上存在多义性不平等。 我们用一种类型的消除算法建立了理论上限约束。 我们还提供了一种全球缓冲算法, 有可能避免建立候选国家的整个指数大小空间, 从而提供了实际推理的基础。 这种算法仍然涉及频繁的固定点计算; 我们展示了如何在仿照刘和斯莫尔卡的线性时间固定算法的具体算法中有效地处理这些问题。 最后, 我们显示, 上层的复杂度在逻辑中添加符号时, 也就是在煤层混合逻辑中保留了。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年10月9日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
31+阅读 · 2021年6月12日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月1日
Arxiv
0+阅读 · 2022年1月28日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年10月9日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
31+阅读 · 2021年6月12日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员