Square-root Lasso problems are proven robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.
翻译:平根激光索问题被证明是强大的回归问题。 此外, 结构宽度的平底回归问题在统计和机器学习中也起着重要作用。 在本文中, 我们集中关注大规模线性限制的微小群体平根Lasso问题的计算。 为了克服目标功能中存在两个非单词的困难, 我们为它建议了基于双双半mooth Newton (SSN) 的强化拉格朗加法(ALM ) 。 也就是说, 我们用ALM 来应对由 SSN 方法解决的子问题的双重问题。 为了应用 SSN 方法, 普及的Jacobian 的正确定性非常重要 。 因此我们将其正确定性与相应的原始问题的非变性条件的制约等同起来。 在数字执行中, 我们完全使用第二顺序, 从而可以有效地获得 Newton 方向 。 数字实验显示了拟议算法的效率 。