Zero-shot learning deals with the ability to recognize objects without any visual training sample. To counterbalance this lack of visual data, each class to recognize is associated with a semantic prototype that reflects the essential features of the object. The general approach is to learn a mapping from visual data to semantic prototypes, then use it at inference to classify visual samples from the class prototypes only. Different settings of this general configuration can be considered depending on the use case of interest, in particular whether one only wants to classify objects that have not been employed to learn the mapping or whether one can use unlabelled visual examples to learn the mapping. This chapter presents a review of the approaches based on deep neural networks to tackle the ZSL problem. We highlight findings that had a large impact on the evolution of this domain and list its current challenges.
翻译:零点学习涉及在没有任何视觉训练样本的情况下辨认对象的能力。 为了抵消这种缺乏视觉数据的情况, 每个要识别的类别都与反映物体基本特征的语义原型相关。 一般的做法是从视觉数据到语义原型中学习绘图, 然后用它来推断对类原型中的视觉样本进行分类。 这种一般配置的不同设置可以视使用情况而定, 特别是人们是否只想对没有用于学习绘图的物体进行分类, 或者是否可以使用未贴标签的视觉示例来学习绘图。 本章回顾了基于深层神经网络解决 ZSL 问题的方法。 我们强调对这一领域演变有重大影响的发现, 并列出当前的挑战 。