We propose a scheme for detecting and correcting faults in any Clifford circuit. The scheme is based on the observation that the set of all possible outcome bit-strings of a Clifford circuit is a linear code, which we call the outcome code. From the outcome code we construct a corresponding stabilizer code, the spacetime code. Our construction extends the circuit-to-code construction of Bacon, Flammia, Harrow and Shi [2], revisited recently by Gottesman [16], to include intermediate and multi-qubit measurements. With this correspondence, we reduce the problem of correcting faults in a circuit to the well-studied problem of correcting errors in a stabilizer code. More precisely, a most likely error decoder for the spacetime code can be transformed into a most likely fault decoder for the circuit. We give efficient algorithms to construct the outcome and spacetime codes. We also identify conditions under which these codes are LDPC, and give an algorithm to generate low-weight checks, which can then be combined with effcient LDPC code decoders.
翻译:我们提出了一种用于检测和纠正任何范畴电路故障的方案。该方案基于一个观察结果,即任何范畴电路的所有可能输出比特串的集合构成一个线性码,我们称之为输出码。从输出码我们构造了一个相应的稳定器码,即时空码。我们的构造扩展了Bacon、Flammia、Harrow和Shi [2]的电路-编码构造,最近被Gottesman [16]重新审视,以包括中间和多量子比特测量。通过这种对应关系,我们将电路中修复故障的问题转化成了修复稳定器码中的错误的问题。更具体地说,时空码的最有可能的错译解码器可以转化为电路的最有可能的故障解码器。我们提供了构造输出码和时空码的有效算法。我们还确认了这些码是低密度奇偶校验码的条件,并提供了一个生成低重量校验的算法,然后将其与高效的低密度奇偶校验码译码器组合使用。