Generating high-fidelity 3D geometries that satisfy specific parameter constraints has broad applications in design and engineering. However, current methods typically rely on large training datasets and struggle with controllability and generalization beyond the training distributions. To overcome these limitations, we introduce LAMP (Linear Affine Mixing of Parametric shapes), a data-efficient framework for controllable and interpretable 3D generation. LAMP first aligns signed distance function (SDF) decoders by overfitting each exemplar from a shared initialization, then synthesizes new geometries by solving a parameter-constrained mixing problem in the aligned weight space. To ensure robustness, we further propose a safety metric that detects geometry validity via linearity mismatch. We evaluate LAMP on two 3D parametric benchmarks: DrivAerNet++ and BlendedNet. We found that LAMP enables (i) controlled interpolation within bounds with as few as 100 samples, (ii) safe extrapolation by up to 100% parameter difference beyond training ranges, (iii) physics performance-guided optimization under fixed parameters. LAMP significantly outperforms conditional autoencoder and Deep Network Interpolation (DNI) baselines in both extrapolation and data efficiency. Our results demonstrate that LAMP advances controllable, data-efficient, and safe 3D generation for design exploration, dataset generation, and performance-driven optimization.
翻译:暂无翻译