The use of artificial intelligence in the agricultural sector has been growing at a rapid rate to automate farming activities. Emergent farming technologies focus on mapping and classification of plants, fruits, diseases, and soil types. Although, assisted harvesting and pruning applications using deep learning algorithms are in the early development stages, there is a demand for solutions to automate such processes. This paper proposes the use of Deep Learning for the classification of trusses and runners of strawberry plants using semantic segmentation and dataset augmentation. The proposed approach is based on the use of noises (i.e. Gaussian, Speckle, Poisson and Salt-and-Pepper) to artificially augment the dataset and compensate the low number of data samples and increase the overall classification performance. The results are evaluated using mean average of precision, recall and F1 score. The proposed approach achieved 91%, 95% and 92% on precision, recall and F1 score, respectively, for truss detection using the ResNet101 with dataset augmentation utilising Salt-and-Pepper noise; and 83%, 53% and 65% on precision, recall and F1 score, respectively, for truss detection using the ResNet50 with dataset augmentation utilising Poisson noise.


翻译:农业部门人工智能的使用迅速增长,使农业活动自动化; 新兴农业技术侧重于植物、水果、疾病和土壤类型的测绘和分类; 虽然利用深学习算法协助采集和处理应用的工艺处于早期开发阶段,但需要找到自动化过程的解决办法。本文件提议利用深学习对草莓植物的藤条和茎子进行分类,使用语义分割和数据集增强; 提议的方法以噪音(即高山、斯佩克勒、普瓦松和盐和硫和硫磺)为基础,人为地扩大数据集,补偿低数据样本数量,提高总体分类性能。 评估结果采用平均精度、回顾和F1分来评估。 拟议的方法在精确度、回溯和F1分方面分别实现了91%、95%和92%的分。 采用ResNet101和数据集增强使用硫和硫磺噪音; 使用精确度、53%和65 %的数据,分别用于精确度、精确度、回溯和F1分,并用TRIS1 的加密数据,使用RISS、53%和SQ1的加密数据。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员