Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. In particular, we explicate a general procedure, attributed to Malgrange, to express all polynomial maps between linear spaces that are equivariant under the action of a group $G$, given a characterization of the invariant polynomials on a bigger space. The method also parametrizes smooth equivariant maps in the case that $G$ is a compact Lie group.
翻译:受物理定律限制的等变机器学习将学习限制在假设类中,其中所有函数都对某些群作用具有等变性。通常使用不可约表示或不变理论来参数化这些函数的空间。在本文中,我们介绍了这个主题,并解释了一些用于明确参数化机器学习应用中使用的等变函数的方法。特别是,我们阐述了一个一般过程,归功于Malgrange,来表达所有多项式映射,这些映射在一个更大的空间中具有不变性,且在$G$群作用下是等变的,给定了对一个更大空间上不变多项式的表征。该方法还在$G$是紧致Lie群的情况下参数化平滑等变映射。