We introduce a model for ant trail formation, building upon previous work on biologically feasible local algorithms that plausibly describe how ants maintain trail networks. The model is a variant of a reinforced random walk on a directed graph, where ants lay pheromone on edges as they traverse them and the next edge to traverse is chosen based on the pheromone level; this pheromone decays with time. There is a bidirectional flow of ants: the forward flow proceeds along forward edges from source (e.g. the nest) to sink (e.g. a food source), and the backward flow in the opposite direction. Some fraction of ants are lost as they pass through each node (modeling the loss of ants due to exploration). We initiate a theoretical study of this model. We first consider the linear decision rule, where the flow divides itself among the next set of edges in proportion to their pheromone level. Here, we show that the process converges to the path with minimum leakage when the forward and backward flows do not change over time. When the forward and backward flows increase over time (caused by positive reinforcement from the discovery of a food source, for example), we show that the process converges to the shortest path. These results are for graphs consisting of two parallel paths (a case that has been investigated before in experiments). Through simulations, we show that these results hold for more general graphs drawn from various random graph models. Further, we consider a general family of decision rules, and show that there is no advantage of using a non-linear rule from this family, if the goal is to find the shortest or the minimum leakage path. We also show that bidirectional flow is necessary for convergence to such paths. Our results provide a plausible explanation for field observations, and open up new avenues for further theoretical and experimental investigation.
翻译:我们引入了蚂蚁尾部形成模型, 以先前在生物上可行的本地算法上的工作为基础, 并令人信服地描述蚂蚁如何维持线索网络。 该模型是一个在定向图形上强化随机行走的变方, 蚂蚁在绕行时在边缘上放置了色素, 并且根据pheomone 水平选择了下一个斜线的边缘; 这个pheomone会随时间而消逝。 蚂蚁的双向流动是双向的。 蚂蚁的双向流动: 从源( 如巢) 向下( 例如食物源) 向下( ) 和 向后流向相反方向。 该模型是一个变异向的变向的变向。 当蚂蚁通过每个节点( 模拟蚂蚁因勘探而消失的蚂蚁) 时, 我们开始对这个模型进行理论性的研究。 我们首先考虑线性决定规则, 流本身在与它们的开放水平成比例的下一组之间, 。 在此后, 我们显示各种直线性曲线的偏向向路径与路径的轨向, 当前和直径向路径的偏向, 当我们从前向前向前向前和向前向前向前向前向后向前向后向前向后向后向后向后向后流流流的路径流的路径不进一步移动时,,, 显示一个直向后向后向后向后向, 显示一个方向的路径的路径, 显示一个方向的路径, 我们向, 显示一个直向, 显示一个直向, 显示一个直向后向, 显示一个直向, 显示一个直向, 显示一个直向, 显示一个直向, 显示一个直向, 显示一个直向, 。 显示一个直向, 显示一个直向, 表示的路径, 表示的路径的路径的路径的路径的路径的路径, 表示, 表示, 表示, 表示, 表示, 显示一个直向, 表示的直向, 表示, 表示的直向, 表示, 表示的直向, 表示, 表示直向后向后向后向, 表示, 表示, 表示, 表示, 直向, 表示, 直向, 表示