Under mild regularity conditions, gradient-based methods converge globally to a critical point in the single-loss setting. This is known to break down for vanilla gradient descent when moving to multi-loss optimization, but can we hope to build some algorithm with global guarantees? We negatively resolve this open problem by proving that desirable convergence properties cannot simultaneously hold for any algorithm. Our result has more to do with the existence of games with no satisfactory outcomes, than with algorithms per se. More explicitly we construct a two-player game with zero-sum interactions whose losses are both coercive and analytic, but whose only simultaneous critical point is a strict maximum. Any 'reasonable' algorithm, defined to avoid strict maxima, will therefore fail to converge. This is fundamentally different from single losses, where coercivity implies existence of a global minimum. Moreover, we prove that a wide range of existing gradient-based methods almost surely have bounded but non-convergent iterates in a constructed zero-sum game for suitably small learning rates. It nonetheless remains an open question whether such behavior can arise in high-dimensional games of interest to ML practitioners, such as GANs or multi-agent RL.
翻译:在温和的常规条件下,以梯度为基础的方法会在全球走向单一亏损环境的临界点。 众所周知, 在转向多重亏损优化时, 它会因香草梯度下降而分解, 但我们希望建立某种具有全球保障的算法吗? 我们通过证明理想趋同特性不能同时支持任何算法而消极地解决了这一尚未解决的问题。 我们的结果更多地涉及没有令人满意的结果的游戏的存在, 而不是算法本身。 我们更明确地构建一个双人游戏, 其损失既具有胁迫性,又具有分析性, 但其唯一同时的临界点是严格的上限。 任何“ 合理” 算法, 被定义为避免严格的峰值, 都将无法汇合。 这与单项损失根本不同, 因为在单一损失中, 共性意味着存在一个全球最低值。 此外, 我们证明, 大量基于梯度的现有方法, 几乎已经约束但非趋同性地在构建的零和零和游戏中, 用于适当的小学习率。 尽管如此, 这种行为是否会出现在高维的游戏中, 仍是一个开放的问题 。