Typical amortized inference in variational autoencoders is specialized for a single probabilistic query. Here we propose an inference network architecture that generalizes to unseen probabilistic queries. Instead of an encoder-decoder pair, we can train a single inference network directly from data, using a cost function that is stochastic not only over samples, but also over queries. We can use this network to perform the same inference tasks as we would in an undirected graphical model with hidden variables, without having to deal with the intractable partition function. The results can be mapped to the learning of an actual undirected model, which is a notoriously hard problem. Our network also marginalizes nuisance variables as required. We show that our approach generalizes to unseen probabilistic queries on also unseen test data, providing fast and flexible inference. Experiments show that this approach outperforms or matches PCD and AdVIL on 9 benchmark datasets.


翻译:在变异自动编码器中,典型的摊销式推论是专门用于单一概率查询的。 我们在此提议一个推论网络结构, 将其概括为不可见概率查询。 我们的网络可以直接从数据中训练单一推论网络, 而不是一个编码器- 解码器对配对, 我们可以直接从数据中训练单一推论网络, 使用成本函数, 不仅在样本中, 而且在查询中都是随机的。 我们可以使用这个网络来执行与在隐藏变量的无方向图形模型中的推论任务一样的推论任务, 而不必处理棘手的分区函数。 其结果可以映射到学习一个实际的非定向模型, 这是一种臭名昭著的难题。 我们的网络还可以按照需要, 将破坏变量边缘化。 我们显示我们的方法一般化了对看不见的测试数据进行隐形概率查询, 提供快速和灵活的推论。 实验显示, 这个方法在9个基准数据集上超越或匹配 PCD 和 AdVIL 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年3月19日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员