Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by each query attending to all keys/values, various methods have constrained the range of attention within local regions, where each query only attends to keys/values within a hand-crafted window. However, these hand-crafted window partition mechanisms are data-agnostic and ignore their input content, so it is likely that one query maybe attends to irrelevant keys/values. To address this issue, we propose a Dynamic Group Attention (DG-Attention), which dynamically divides all queries into multiple groups and selects the most relevant keys/values for each group. Our DG-Attention can flexibly model more relevant dependencies without any spatial constraint that is used in hand-crafted window based attention. Built on the DG-Attention, we develop a general vision transformer backbone named Dynamic Group Transformer (DGT). Extensive experiments show that our models can outperform the state-of-the-art methods on multiple common vision tasks, including image classification, semantic segmentation, object detection, and instance segmentation.


翻译:最近,变换器在各种视觉任务中表现出了有希望的性能。为了减少每个查询涉及所有关键/价值而引发的二次计算复杂性,各种方法限制了当地区域的关注范围,因为每个查询只关注手制窗口中的键/价值。然而,这些手工制作的窗口分割机制是数据不可知的,忽视了输入内容,因此,可能有一个查询可能关注无关的键/价值。为了解决这个问题,我们提议一个动态群注意(DG-Attention),将所有查询动态组分为多个组,并为每个组选择最相关的键/价值。我们的DG-Atention可以灵活地模拟更相关的依赖性,而没有基于注意的手工制作窗口中所使用的任何空间限制。在DG-Atention的基础上,我们开发了一个名为动态组变换器(DGT)的通用变压器主干。广泛的实验显示,我们的模型可以超越多种共同视觉任务上的状况式方法,包括图像分类、语义分解、对象探测和像形分割。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员