This study presents an agent-based model (ABM) developed to simulate the resilience of a community to hurricane-induced infrastructure disruptions, focusing on the interdependencies between electric power and transportation networks. In this ABM approach, agents represent the components of a system, where interactions within a system shape intra-dependency of a system and interactions among systems shape interdependencies. To study household resilience subject to a hurricane, a library of agents has been created including electric power network, transportation network, wind/flooding hazards, and household agents. The ABM is applied over the household and infrastructure data from a community (Zip code 33147) in Miami-Dade County, Florida. Interdependencies between the two networks are modeled in two ways, (i) representing the role of transportation in fuel delivery to power plants and restoration teams' access, (ii) impact of power outage on transportation network components. Restoring traffic signals quickly is crucial as their outage can slow down traffic and increase the chance of crashes. We simulate three restoration strategies: component based, distance based, and traffic lights based restoration. The model is validated against Hurricane Irma data, showing consistent behavior with varying hazard intensities. Scenario analyses explore the impact of restoration strategies, road accessibility, and wind speed intensities on power restoration. Results demonstrate that a traffic lights based restoration strategy efficiently prioritizes signal recovery without delaying household power restoration time. Restoration of power services will be faster if restoration teams do not need to wait due to inaccessible roads and fuel transportation to power plants is not delayed.
翻译:暂无翻译