Due to the scarcity of video processing methodologies, image processing operations are naively extended to the video domain by processing each frame independently. This disregard for the temporal connection in video processing often leads to severe temporal inconsistencies. State-of-the-art techniques that address these inconsistencies rely on the availability of unprocessed videos to siphon consistent video dynamics to restore the temporal consistency of frame-wise processed videos. We propose a novel general framework for this task that learns to infer consistent motion dynamics from inconsistent videos to mitigate the temporal flicker while preserving the perceptual quality for both the temporally neighboring and relatively distant frames. The proposed framework produces state-of-the-art results on two large-scale datasets, DAVIS and videvo.net, processed by numerous image processing tasks in a feed-forward manner. The code and the trained models will be released upon acceptance.
翻译:由于缺少视频处理方法,图像处理操作通过独立处理每个框架而天真地扩展到视频领域。这种无视视频处理中的时间连接往往导致严重的时间不一致。解决这些不一致问题的最新技术取决于是否有未经处理的视频来抽取连续的视频动态,以恢复从框架角度处理的视频在时间上的一致性。我们为这项任务提出了一个新的总框架,用于从不一致的视频中推断出连贯一致的动态动态,以减少时间闪烁,同时为时间相邻和相对遥远的框架保留感知质量。拟议框架在两个大型数据集DAVIS和Videvo.net上产生最新的结果,由许多图像处理任务以反馈方式处理。代码和经过培训的模型一旦被接受,将予公布。