Two graphs $G$ and $H$ are homomorphism indistinguishable over a class of graphs $\mathcal{F}$ if for all graphs $F \in \mathcal{F}$ the number of homomorphisms from $F$ to $G$ is equal to the number of homomorphisms from $F$ to $H$. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations over certain graph classes. Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t. any self-complementarity logic admitting a characterisation as homomorphism indistinguishability relation can be characterised by homomorphism indistinguishability over a minor-closed graph class. Self-complementarity is a mild property satisfied by most well-studied logics. This result follows from a correspondence between closure properties of a graph class and preservation properties of its homomorphism indistinguishability relation. Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we answer various question raised by Roberson (2022) on general properties of the homomorphism distinguishing closure.
翻译:如果对于所有图 $F \in \mathcal{F}$,从 $F$ 到图 $G$ 的同态数量等于从 $F$ 到图 $H$ 的同态数量,则称图 $G$ 和 $H$ 在图类 $\mathcal{F}$ 上具有同态不可区分性。许多自然的比较图的等价关系,如(量子)同构、谱和逻辑等价性,都可以被描述为某些图类上的同态不可区分性关系。本文摆脱了这些实例的丰富性,证明了如果任何自补充逻辑关系可以被描述为同态不可区分性关系,则它可以通过在一个禁止子图类上进行同态不可区分性来进行描述。自补充是大多数研究良好的逻辑所满足的一种轻微属性。该结果是通过一个图类的闭包性和其同态不可区分性关系的保留性之间的对应关系得到的。此外,我们对所有在某种意义上有限(实质上的紧)且满足同态区分闭包极大条件的图类进行了分类。因此,我们回答了 Roberson(2022)在同态区分闭包的一般特性方面提出的各种问题。