A machine learning model that generalizes well should obtain low errors on unseen test examples. Thus, if we know how to optimally perturb training examples to account for test examples, we may achieve better generalization performance. However, obtaining such perturbation is not possible in standard machine learning frameworks as the distribution of the test data is unknown. To tackle this challenge, we propose a novel regularization method, meta-dropout, which learns to perturb the latent features of training examples for generalization in a meta-learning framework. Specifically, we meta-learn a noise generator which outputs a multiplicative noise distribution for latent features, to obtain low errors on the test instances in an input-dependent manner. Then, the learned noise generator can perturb the training examples of unseen tasks at the meta-test time for improved generalization. We validate our method on few-shot classification datasets, whose results show that it significantly improves the generalization performance of the base model, and largely outperforms existing regularization methods such as information bottleneck, manifold mixup, and information dropout.
翻译:普通化的机器学习模式应该能够从隐蔽的测试实例中获取低误差。 因此,如果我们知道如何最佳地干扰培训实例以说明测试实例,我们就可以取得更好的概括性表现。 但是,在标准的机器学习框架中不可能获得这种扰动性能,因为测试数据的分布尚不清楚。 为了应对这一挑战,我们建议一种新型的正规化方法,即元流出,它学会在元学习框架中破坏培训范例的概括性潜在特征。具体地说,我们破除一个噪音生成器,它为潜在特征提供多种复制性噪音分布,从而以依赖输入的方式在测试实例中获取低误差。然后,所学的噪音生成器可以干扰元测试时无形任务的培训实例,以便改进总体化。我们验证了我们关于微小的分类数据集的方法,其结果显示它大大改进了基础模型的通用性能,并在很大程度上超过了现有的正规化方法,如信息瓶、多种混合和信息丢弃等。