This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bounds on the number of mass points. In particular, the upper bound of order $\mathsf{A} \log^2(\mathsf{A})$ and lower bound of order $\sqrt{\mathsf{A}}$ are established where $\mathsf{A}$ is the constraint on the input amplitude. In addition, along the way, we show several other properties of the capacity and capacity-achieving distribution. For example, it is shown that the capacity is equal to $ - \log P_{Y^\star}(0)$ where $P_{Y^\star}$ is the optimal output distribution. Moreover, an upper bound on the values of the probability masses of the capacity-achieving distribution and a lower bound on the probability of the largest mass point are established.


翻译:这项工作考虑了带有振幅限制的 Poisson 噪声频道。 众所周知, 此频道的容量实现输入分布是受输入振幅限制的。 我们通过引入质量点数的上下界限来放大这个结果。 特别是, $\ mathsf{ A}\ log2\\\ mathsf{ A} 的上限值和 $\ sqrt\ mathsf{ A} 的下限值。 此外, $\ mathsf{ A} 的上限值是受输入振幅限制的。 此外, 我们展示了能力及能力实现分布的若干其他属性。 例如, 显示能力等于$ -\ log P ⁇ \\\\\\\\\\\\\\\\\\ star} (0) 美元, 其中$$是最佳输出分布的值。 此外,, 能力实现分布的概率的上限的上限是受值的上限约束值的上限 。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员