The non-negative matrix factorization (NMF) model with an additional orthogonality constraint on one of the factor matrices, called the orthogonal NMF (ONMF), has been found a promising clustering model and can outperform the classical K-means. However, solving the ONMF model is a challenging optimization problem because the coupling of the orthogonality and non-negativity constraints introduces a mixed combinatorial aspect into the problem due to the determination of the correct status of the variables (positive or zero). Most of the existing methods directly deal with the orthogonality constraint in its original form via various optimization techniques, but are not scalable for large-scale problems. In this paper, we propose a new ONMF based clustering formulation that equivalently transforms the orthogonality constraint into a set of norm-based non-convex equality constraints. We then apply a non-convex penalty (NCP) approach to add them to the objective as penalty terms, leading to a problem that is efficiently solvable. One smooth penalty formulation and one non-smooth penalty formulation are respectively studied. We build theoretical conditions for the penalized problems to provide feasible stationary solutions to the ONMF based clustering problem, as well as proposing efficient algorithms for solving the penalized problems of the two NCP methods. Experimental results based on both synthetic and real datasets are presented to show that the proposed NCP methods are computationally time efficient, and either match or outperform the existing K-means and ONMF based methods in terms of the clustering performance.


翻译:非负矩阵因子化模型(NMF)与一个因素矩阵(称为正值或零值)的额外正值约束一道,非负矩阵因子因子因子因子因子因子因子因子因子因子因子模型(NMF)被发现是一个有希望的组合模型,能够超越经典K手段。然而,解决非负矩阵因子因子因子因子因子因子因子(正值或零值)的混合组合模型(NMF)模式是一个具有挑战性的优化问题。大部分现有方法直接通过各种优化技术处理其原形态的正值NMF(NMF)制约,但对于大规模问题来说无法伸缩。在本文件中,我们提出了一个新的基于NMFMF集群模型(ON)模式,以等量性因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子因子而相互混并异而相互混并并并并并并并并分不一,造成,造成问题。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
41+阅读 · 2021年2月12日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Orthogonal Decomposition of Tensor Trains
Arxiv
0+阅读 · 2021年9月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员