Let $P$ be a set of $m$ points in ${\mathbb R}^2$, let $\Sigma$ be a set of $n$ semi-algebraic sets of constant complexity in ${\mathbb R}^2$, let $(S,+)$ be a semigroup, and let $w: P \rightarrow S$ be a weight function on the points of $P$. We describe a randomized algorithm for computing $w(P\cap\sigma)$ for every $\sigma\in\Sigma$ in overall expected time $O^*\bigl( m^{\frac{2s}{5s-4}}n^{\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n \bigr)$, where $s>0$ is a constant that bounds the maximum complexity of the regions of $\Sigma$, and where the $O^*(\cdot)$ notation hides subpolynomial factors. For $s\ge 3$, surprisingly, this bound is smaller than the best-known bound for answering $m$ such queries in an on-line manner. The latter takes $O^*(m^{\frac{s}{2s-1}}n^{\frac{2s-2}{2s-1}}+m+n)$ time. Let $\Phi: \Sigma \times P \rightarrow \{0,1\}$ be the Boolean predicate (of constant complexity) such that $\Phi(\sigma,p) = 1$ if $p\in\sigma$ and $0$ otherwise, and let $\Sigma\mathop{\Phi} P = \{ (\sigma,p) \in \Sigma\times P \mid \Phi(\sigma,p)=1\}$. Our algorithm actually computes a partition ${\mathcal B}_\Phi$ of $\Sigma\mathop{\Phi} P$ into bipartite cliques (bicliques) of size (i.e., sum of the sizes of the vertex sets of its bicliques) $O^*\bigl( m^{\frac{2s}{5s-4}}n^{\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n \bigr)$. It is straightforward to compute $w(P\cap\sigma)$ for all $\sigma\in \Sigma$ from ${\mathcal B}_\Phi$. Similarly, if $\eta: \Sigma \rightarrow S$ is a weight function on the regions of $\Sigma$, $\sum_{\sigma\in \Sigma: p \in \sigma} \eta(\sigma)$, for every point $p\in P$, can be computed from ${\mathcal B}_\Phi$ in a straightforward manner. A recent work of Chan et al. solves the online version of this dual point enclosure problem within the same performance bound as our off-line solution. We also mention a few other applications of computing ${\mathcal B}_\Phi$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月1日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月25日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员