The famous singlet correlations of a composite quantum system consisting of two spatially separated components exhibit notable features of two kinds. The first kind consists of striking certainty relations: perfect correlation and perfect anti-correlation in certain settings. The second kind consists of a number of symmetries, in particular, invariance under rotation, as well as invariance under exchange of components, parity, or chirality. In this note, I investigate the class of correlation functions that can be generated by classical composite physical systems when we restrict attention to systems which reproduce the certainty relations exactly, and for which the rotational invariance of the correlation function is the manifestation of rotational invariance of the underlying classical physics. I call such correlation functions classical EPR-B correlations. It turns out that the other three (binary) symmetries can then be obtained "for free": they are exhibited by the correlation function, and can be imposed on the underlying physics by adding an underlying randomisation level. We end up with a simple probabilistic description of all possible classical EPR-B correlations in terms of a "spinning coloured disk" model, and a research programme: describe these functions in a concise analytic way. We survey open problems, and we show that the widespread idea that "quantum correlations are more extreme than classical physics allows" is at best highly inaccurate, through giving a concrete example of a classical correlation which satisfies all the symmetries and all the certainty relations and which exceeds the quantum correlations over a whole range of settings
翻译:由两个空间分隔的复合量子系统有名的单点相关性, 由两个空间分离的组件组成, 具有两种显著的特征。 第一类由惊人的确定性关系组成: 完全的关联和在某些环境里完全的反正关系。 第二类由若干对称组成, 特别是轮换时的变动, 以及互换部件、 均等或手艺时的偏差。 在本说明中, 我调查了古典复合物理系统在限制对精确复制确定性关系的系统的关注时, 可以产生的相关功能类别。 第一类由惊人的确定性关系组成。 第一类由惊人的确定性关系: 完美的关联函数的旋转性是基础古典物理学的循环性变化。 我称之为这种对应性功能的经典 EPR- B 相关关系。 它证明其他三种( 双重) 的对称可以“ 自由”, 它们由相关功能所展示的, 并且可以通过添加一个基本随机调来强制给基础物理学。 最后, 我们用一个简单的直径描述所有可能的古典 EPR- B的直系关系, 用一个“ 直径直观的直交关系 ” 模型来描述一个“ 我们通过一个更精确的直径直径直径直径直径直径直的模型显示一个“ ” 的模型显示一个“ ” 的模型, 的模型显示一个“ 的直径直径直径直的模型, ” 显示一个“ 我们展示一个“ ” ” ” 的模型, 通过一个“ 通过一个“ 的直径直的模型显示一个“ ” ” 的直径直径直径直径直的模型显示一个“ 我们展示一个“ 的模型显示一个“ 显示一个“ ” 显示一个“ 显示一个“ ” ” ” ” ” ” 和一个“ ” ” ” ” ” 的模型和一个“ 的直度” 的模型的直度, 的模型, 的模型, 和一个“ 我们展示一个“ 和一个“ 的直径直径直度” 的模型, 通过一个“ 的精确的模型显示一个“ 和一个“ ” 直径直径直径直径直径直径直线性” ” ”, 通过一个“