While a large number of recent works on semantic segmentation focus on designing and incorporating a transformer-based encoder, much less attention and vigor have been devoted to transformer-based decoders. For such a task whose hallmark quest is pixel-accurate prediction, we argue that the decoder stage is just as crucial as that of the encoder in achieving superior segmentation performance, by disentangling and refining the high-level cues and working out object boundaries with pixel-level precision. In this paper, we propose a novel transformer-based decoder called UperFormer, which is plug-and-play for hierarchical encoders and attains high quality segmentation results regardless of encoder architecture. UperFormer is equipped with carefully designed multi-head skip attention units and novel upsampling operations. Multi-head skip attention is able to fuse multi-scale features from backbones with those in decoders. The upsampling operation, which incorporates feature from encoder, can be more friendly for object localization. It brings a 0.4% to 3.2% increase compared with traditional upsampling methods. By combining UperFormer with Swin Transformer (Swin-T), a fully transformer-based symmetric network is formed for semantic segmentation tasks. Extensive experiments show that our proposed approach is highly effective and computationally efficient. On Cityscapes dataset, we achieve state-of-the-art performance. On the more challenging ADE20K dataset, our best model yields a single-scale mIoU of 50.18, and a multi-scale mIoU of 51.8, which is on-par with the current state-of-art model, while we drastically cut the number of FLOPs by 53.5%. Our source code and models are publicly available at: https://github.com/shiwt03/UperFormer


翻译:虽然最近大量关于语义分解的工程侧重于设计和整合基于变压器的变压器编码器, 但对于基于变压器的解码器来说, 关注度和振动量远不如对变压器的解析器。 对于一个其标志性追求是像素-精密预测的任务来说, 我们争辩说, 解码器的解码器阶段与编码器的解析器阶段一样重要, 通过拆译和精细化高端导线, 以像素级的精确度计算目标界限。 在本文中, 我们提议一个新型变压器的解调器- Uper Former, 名为 Uper Former, 以50级编码的变压器和游戏为基础, 以变压器为基础的变压器 。 高端变压器的变压机型模型 与高型的变压机型模型 完全匹配。 我们的变压式的变压式模型, 我们的变压式操作, 和变压式的变式的变压器 将更方便本地化器 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员