Saliency Prediction aims to predict the attention distribution of human eyes given an RGB image. Most of the recent state-of-the-art methods are based on deep image feature representations from traditional CNNs. However, the traditional convolution could not capture the global features of the image well due to its small kernel size. Besides, the high-level factors which closely correlate to human visual perception, e.g., objects, color, light, etc., are not considered. Inspired by these, we propose a Transformer-based method with semantic segmentation as another learning objective. More global cues of the image could be captured by Transformer. In addition, simultaneously learning the object segmentation simulates the human visual perception, which we would verify in our investigation of human gaze control in cognitive science. We build an extra decoder for the subtask and the multiple tasks share the same Transformer encoder, forcing it to learn from multiple feature spaces. We find in practice simply adding the subtask might confuse the main task learning, hence Multi-task Attention Module is proposed to deal with the feature interaction between the multiple learning targets. Our method achieves competitive performance compared to other state-of-the-art methods.


翻译:以 RGB 图像显示的人类眼睛的注意分布 。 最新最先进的方法大多基于传统CNN 的深度图像特征演示。 然而,传统变异由于内核大小小,无法捕捉图像的全局特征。 此外,没有考虑到与人类视觉感知密切相关的高层次因素,例如物体、颜色、光等。 受这些因素的启发,我们提议采用以变异器为基础的方法,将语义分化作为另一个学习目标。 变异器可以捕捉更多全球图像线索。 此外,同时学习天体分解模拟人类视觉感知,我们将在对认知科学中的人类凝视控制进行调查时加以核实。 我们为子任务和多重任务建造了一个额外的解码器, 共享相同的变异变器编码器, 迫使它从多个特征空间学习。 我们发现, 在实践中, 仅仅添加子塔斯克 可能混淆主要任务学习过程, 因此多功能注意模块被提议处理多个学习目标之间的地貌互动。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员