Artificial Intelligence (Deep Learning(DL)/ Machine Learning(ML)) techniques are widely being used to address and overcome all kinds of ill-posed problems in medical imaging which was or in fact is seemingly impossible. Reducing gradient directions but harnessing high angular resolution(HAR) diffusion data in MR that retains clinical features is an important and challenging problem in the field. While the DL/ML approaches are promising, it is important to incorporate relevant context for the data to ensure that maximum prior information is provided for the AI model to infer the posterior. In this paper, we introduce HemiHex (HH) subsampling to suggestively address training data sampling on q-space geometry, followed by a nearest neighbor regression training on the HH-samples to finally upsample the dMRI data. Earlier studies has tried to use regression for up-sampling dMRI data but yields performance issues as it fails to provide structured geometrical measures for inference. Our proposed approach is a geometrically optimized regression technique which infers the unknown q-space thus addressing the limitations in the earlier studies.
翻译:人工智能(深入学习(DL)/机器学习(ML))技术正在被广泛用于处理和克服医学成像中似乎不可能或实际上不可能处理的各类弊病问题。减少梯度方向,但在MR中利用具有临床特征的高角分辨率(HAR)扩散数据,是该领域的一个重要和具有挑战性的问题。虽然DL/ML方法很有希望,但必须纳入相关数据背景,以确保为AI模型提供最大程度的先前信息,以推断后方。在本文件中,我们采用了HemiHex(HH)子抽样,以示对q空间几何学的培训数据取样,随后在H-Samples上进行近距离的相邻回归培训,以便最终对 dMRI数据进行抽样。早期的研究试图对高端的 dMRI 数据使用回归,但会产生性能问题,因为它无法提供结构化的几何测算尺度来推断误判。我们提议的方法是一种从几何角度最优化的回归技术,可以推断出未知的q-space-space,从而解决先前研究中的局限性。