This paper is concerned with learning transferable contact models for aerial manipulation tasks. We investigate a contact-based approach for enabling unmanned aerial vehicles with cable-suspended passive grippers to compute the attach points on novel payloads for aerial transportation. This is the first time that the problem of autonomously generating contact points for such tasks has been investigated. Our approach builds on the underpinning idea that we can learn a probability density of contacts over objects' surfaces from a single demonstration. We enhance this formulation for encoding aerial transportation tasks while maintaining the one-shot learning paradigm without handcrafting task-dependent features or employing ad-hoc heuristics; the only prior is extrapolated directly from a single demonstration. Our models only rely on the geometrical properties of the payloads computed from a point cloud, and they are robust to partial views. The effectiveness of our approach is evaluated in simulation, in which one or three quadropters are requested to transport previously unseen payloads along a desired trajectory. The contact points and the quadroptors configurations are computed on-the-fly for each test by our apporach and compared with a baseline method, a modified grasp learning algorithm from the literature. Empirical experiments show that the contacts generated by our approach yield a better controllability of the payload for a transportation task. We conclude this paper with a discussion on the strengths and limitations of the presented idea, and our suggested future research directions.
翻译:本文涉及为空中操纵任务学习可转让接触模式。 我们调查了一种基于接触的方法,使无人驾驶飞行器能够使用有电缆悬浮式被动控制器计算用于空中运输的新有效载荷的附加点。 这是第一次对自主生成此类任务联络点的问题进行了调查。 我们的方法基于一个基本想法,即我们可以从一个单一的演示中了解天体表面接触的概率密度。 我们强化了这种将空中运输任务编码的配方,同时保持一次性学习模式,而没有手工制作任务依赖的功能或使用临时超速超速; 唯一的前一种方法直接从单一的演示中推断出来。 我们的模型仅依赖从点云中计算的有效载荷的几何特性,这些特性是强到局部观点。 我们的方法的有效性是在模拟中加以评价,其中要求一个或三个四位投管器将先前看不见的有效载荷与理想的轨迹一起运输。 我们的联络点和振荡器配置在空中进行每次测试时都计算, 与一个基线方法相比较, 我们的模型仅依赖于从一个点云云云中计算出来, 并且用一种更精确的轨迹分析方法, 我们的定位分析了我们所产生的结果, 我们的逻辑上的分析能力分析了我们所产生的结果。