Soft actuators offer a safe, adaptable approach to tasks like gentle grasping and dexterous manipulation. Creating accurate models to control such systems however is challenging due to the complex physics of deformable materials. Accurate Finite Element Method (FEM) models incur prohibitive computational complexity for closed-loop use. Using a differentiable simulator is an attractive alternative, but their applicability to soft actuators and deformable materials remains underexplored. This paper presents a framework that combines the advantages of both. We learn a differentiable model consisting of a material properties neural network and an analytical dynamics model of the remainder of the manipulation task. This physics-informed model is trained using data generated from FEM, and can be used for closed-loop control and inference. We evaluate our framework on a dielectric elastomer actuator (DEA) coin-pulling task. We simulate the task of using DEA to pull a coin along a surface with frictional contact, using FEM, and evaluate the physics-informed model for simulation, control, and inference. Our model attains < 5% simulation error compared to FEM, and we use it as the basis for an MPC controller that requires fewer iterations to converge than model-free actor-critic, PD, and heuristic policies.
翻译:软动画器提供了一种安全、适应性化的方法, 来应对温和握紧和巧妙操纵等任务。 但是, 创建精确模型来控制这些系统由于变形材料的复杂物理学而具有挑战性。 精确的精密元素法模型( FEM) 在闭环使用时具有令人望而生畏的计算复杂性。 使用不同的模拟器是一个有吸引力的替代方法, 但是它们对于软活动器和变形材料的适用性仍然未得到充分探讨。 本文展示了一个将两者的优势结合起来的框架。 我们学习了一种不同的模型, 由物质属性神经网络和对操作任务剩余部分的分析动态模型组成。 这种物理知情模型是利用从 FEM 生成的数据来培训的, 可用于闭环控制和推断。 我们用电动电动动动动动动动动动动动动动动动动动动动画(DEA) 动作器(D) 硬质拉硬质与表面摩擦相结合, 使用FEM 和摩擦接触来模拟、 评估物理知情模型的模型, 用于模拟、 模拟、 控制、 和推断。 我们的模型需要比 FMC 更小的模型, 更小的模型需要更小的模型,,, 将它更小的模化到更小的模化的模型需要,, 的模型需要更小的模型到更小的模型到更小的模型, 。