This paper comprehensively reviews hand gesture datasets based on Ultraleap's leap motion controller, a popular device for capturing and tracking hand gestures in real-time. The aim is to offer researchers and practitioners a valuable resource for developing and evaluating gesture recognition algorithms. The review compares various datasets found in the literature, considering factors such as target domain, dataset size, gesture diversity, subject numbers, and data modality. The strengths and limitations of each dataset are discussed, along with the applications and research areas in which they have been utilized. An experimental evaluation of the leap motion controller 2 device is conducted to assess its capabilities in generating gesture data for various applications, specifically focusing on touchless interactive systems and virtual reality. This review serves as a roadmap for researchers, aiding them in selecting appropriate datasets for their specific gesture recognition tasks and advancing the field of hand gesture recognition using leap motion controller technology.
翻译:暂无翻译