Mean-field games (MFG) were introduced to efficiently analyze approximate Nash equilibria in large population settings. In this work, we consider entropy-regularized mean-field games with a finite state-action space in a discrete time setting. We show that entropy regularization provides the necessary regularity conditions, that are lacking in the standard finite mean field games. Such regularity conditions enable us to design fixed-point iteration algorithms to find the unique mean-field equilibrium (MFE). Furthermore, the reference policy used in the regularization provides an extra means, through which one can control the behavior of the population. We first formulate the problem as a stochastic game with a large population of $N$ homogeneous agents. We establish conditions for the existence of a Nash equilibrium in the limiting case as $N$ tends to infinity, and we demonstrate that the Nash equilibrium for the infinite population case is also an $\epsilon$-Nash equilibrium for the $N$-agent regularized game, where the sub-optimality $\epsilon$ is of order $\mathcal{O}\big(1/\sqrt{N}\big)$. Finally, we verify the theoretical guarantees through a resource allocation example and demonstrate the efficacy of using a reference policy to control the behavior of a large population of agents.


翻译:引入了常规游戏(MFG)来有效分析大型人口环境中的近似 Nash 平均平衡。 在这项工作中, 我们考虑在离散的时间设置中, 使用有限的州行动空间, 使用有限的州行动空间, 使用不固定的普通游戏 。 这种常规性条件使我们能够设计固定点的重复算法, 以找到独特的平均平衡 。 此外, 正规化中使用的参考政策提供了一种额外手段, 通过这种手段, 一个人可以控制人口的行为 。 我们首先将问题发展成一个随机游戏, 与大量人口( 美元同质剂) 形成一个不固定的州行动空间 。 我们为限制情况下的纳什平衡创造了必要的常规性条件, 因为这些条件在标准限值平均游戏中是缺乏的。 我们证明, 无限人口案例中的纳什平衡也是一种美元和纳什的平衡, 用于美元试剂正规化的游戏, 在那里, 亚优度 $\ silon$ 可以控制人口行为 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员