In low distortion metric embeddings, the goal is to embed a host "hard" metric space into a "simpler" target space while approximately preserving pairwise distances. A highly desirable target space is that of a tree metric. Unfortunately, such embedding will result in a huge distortion. A celebrated bypass to this problem is stochastic embedding with logarithmic expected distortion. Another bypass is Ramsey-type embedding, where the distortion guarantee applies only to a subset of the points. However, both these solutions fail to provide an embedding into a single tree with a worst-case distortion guarantee on all pairs. In this paper, we propose a novel third bypass called \emph{clan embedding}. Here each point $x$ is mapped to a subset of points $f(x)$, called a \emph{clan}, with a special \emph{chief} point $\chi(x)\in f(x)$. The clan embedding has multiplicative distortion $t$ if for every pair $(x,y)$ some copy $y'\in f(y)$ in the clan of $y$ is close to the chief of $x$: $\min_{y'\in f(y)}d(y',\chi(x))\le t\cdot d(x,y)$. Our first result is a clan embedding into a tree with multiplicative distortion $O(\frac{\log n}{\epsilon})$ such that each point has $1+\epsilon$ copies (in expectation). In addition, we provide a "spanning" version of this theorem for graphs and use it to devise the first compact routing scheme with constant size routing tables. We then focus on minor-free graphs of diameter prameterized by $D$, which were known to be stochastically embeddable into bounded treewidth graphs with expected additive distortion $\epsilon D$. We devise Ramsey-type embedding and clan embedding analogs of the stochastic embedding. We use these embeddings to construct the first (bicriteria quasi-polynomial time) approximation scheme for the metric $\rho$-dominating set and metric $\rho$-independent set problems in minor-free graphs.
翻译:在低扭曲度嵌入中, 目标是将主机“ 硬性” 度空间嵌入一个“ 简化” 目标空间, 并大致保存对称距离。 一个非常理想的目标空间是树度。 不幸的是, 这种嵌入将会导致巨大的扭曲。 这个问题的一个值得庆祝的绕路是随机嵌入对数预期扭曲。 另一个绕路是 拉姆西型嵌入, 扭曲保证仅适用于其中的一个子点。 但是, 这两种解决方案都无法提供将主机“ 硬性” 的“ 硬性” 度空间嵌入一个“ 简化” 目标空间。 在本文中, 我们提议一个叫“ 硬性” 硬性“硬性” 硬性“硬性“硬性” 硬性“硬性“ 硬性“ 硬性“硬性” 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性地“ 硬性地“ 硬性“, 硬性“ 硬性“ 硬性“, 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“, 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“, 硬性“ 硬性“ 硬性“,, 硬性“ 硬性“, 硬性“, 硬性“, 硬性“, 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性“ 硬性地,,,, 硬性“ 硬性“ 硬性“ 硬性“, 硬性“, 硬性“ 硬性“ 硬性“ 硬性