We consider here the discrete time dynamics described by a transformation $T:M \to M$, where $T$ is either the action of shift $T=\sigma$ on the symbolic space $M=\{1,2,...,d\}^\mathbb{N}$, or, $T$ describes the action of a $d$ to $1$ expanding transformation $T:S^1 \to S^1$ of class $C^{1+\alpha}$ (\,for example $x \to T(x) =d\, x $ (mod $1) $\,), where $M=S^1$ is the unit circle. It is known that the infinite-dimensional manifold $\mathcal{N}$ of equilibrium probabilities for H\"older potentials $A:M \to \mathbb{R}$ is an analytical manifold and carries a natural Riemannian metric associated with the asymptotic variance. We show here that under the assumption of the existence of a Fourier-like Hilbert basis for the kernel of the Ruelle operator there exists geodesics paths. When $T=\sigma$ and $M=\{0,1\}^\mathbb{N}$ such basis exists. In a different direction, we also consider the KL-divergence $D_{KL}(\mu_1,\mu_2)$ for a pair of equilibrium probabilities. If $D_{KL}(\mu_1,\mu_2)=0$, then $\mu_1=\mu_2$. Although $D_{KL}$ is not a metric in $\mathcal{N}$, it describes the proximity between $\mu_1$ and $\mu_2$. A natural problem is: for a fixed probability $\mu_1\in \mathcal{N}$ consider the probability $\mu_2$ in a convex set of probabilities in $\mathcal{N}$ which minimizes $D_{KL}(\mu_1,\mu_2)$. This minimization problem is a dynamical version of the main issues considered in information projections. We consider this problem in $\mathcal{N}$, a case where all probabilities are dynamically invariant, getting explicit equations for the solution sought. Triangle and Pythagorean inequalities will be investigated.
翻译:暂无翻译