The new alternative is to use deep learning to inpaint any image by utilizing image classification and computer vision techniques. In general, image inpainting is a task of recreating or reconstructing any broken image which could be a photograph or oil/acrylic painting. With the advancement in the field of Artificial Intelligence, this topic has become popular among AI enthusiasts. With our approach, we propose an initial end-to-end pipeline for inpainting images using a complete Machine Learning approach instead of a conventional application-based approach. We first use the YOLO model to automatically identify and localize the object we wish to remove from the image. Using the result obtained from the model we can generate a mask for the same. After this, we provide the masked image and original image to the GAN model which uses the Contextual Attention method to fill in the region. It consists of two generator networks and two discriminator networks and is also called a coarse-to-fine network structure. The two generators use fully convolutional networks while the global discriminator gets hold of the entire image as input while the local discriminator gets the grip of the filled region as input. The contextual Attention mechanism is proposed to effectively borrow the neighbor information from distant spatial locations for reconstructing the missing pixels. The third part of our implementation uses SRGAN to resolve the inpainted image back to its original size. Our work is inspired by the paper Free-Form Image Inpainting with Gated Convolution and Generative Image Inpainting with Contextual Attention.
翻译:新的替代办法是利用图像分类和计算机视觉技术,利用深度学习来绘制任何图像。 一般来说, 图像油漆是一项重塑或重建任何破损图像的任务, 可能是照片或油/ 油/ 油/ 油画。 随着人工智能领域的进步, 这个话题在AI 爱好者中变得很受欢迎。 通过我们的方法, 我们提出一个初始端对端管道, 用于用完整的机器学习方法而不是传统的应用性网络结构来油漆图像。 我们首先使用 YOLO 模型自动识别并本地化我们希望从图像中移除的对象。 使用从模型中获得的结果, 我们可以为同一图像制作面具。 在此之后, 我们向GAN 模型提供遮盖的图像和原始图像, 该模型使用“ 环境关注” 方法填充区域。 由两个发电机网络和两个歧视者网络组成, 也称为“ 粗化到纤维网络结构 ” 。 两台发电机使用全演算网络, 同时让全球分析者将整个图像保存为输入内容, 而本地分析者则从深层的图像定位 重新使用我们的图像定位系统 。