Lattice-Boltzmann methods are known for their simplicity, efficiency and ease of parallelization, usually relying on uniform Cartesian meshes with a strong bond between spatial and temporal discretization. This fact complicates the crucial issue of reducing the computational cost and the memory impact by automatically coarsening the grid where a fine mesh is unnecessary, still ensuring the overall quality of the numerical solution through error control. This work provides a possible answer to this interesting question, by connecting, for the first time, the field of lattice-Boltzmann Methods (LBM) to the adaptive multiresolution (MR) approach based on wavelets. To this end, we employ a MR multi-scale transform to adapt the mesh as the solution evolves in time according to its local regularity. The collision phase is not affected due to its inherent local nature and because we do not modify the speed of the sound, contrarily to most of the LBM/Adaptive Mesh Refinement (AMR) strategies proposed in the literature, thus preserving the original structure of any LBM scheme. Besides, an original use of the MR allows the scheme to resolve the proper physics by efficiently controlling the accuracy of the transport phase. We carefully test our method to conclude on its adaptability to a wide family of existing lattice Boltzmann schemes, treating both hyperbolic and parabolic systems of equations, thus being less problem-dependent than the AMR approaches, which have a hard time guaranteeing an effective control on the error. The ability of the method to yield a very efficient compression rate and thus a computational cost reduction for solutions involving localized structures with loss of regularity is also shown, while guaranteeing a precise control on the approximation error introduced by the spatial adaptation of the grid. The numerical strategy is implemented on a specific open-source platform called SAMURAI with a dedicated data-structure relying on set algebra.


翻译:Lattice-Boltzmann 方法以简单、高效和容易平行的方式为人所知,通常依赖统一的Cartesian meshes, 且在空间和时间分解之间有着强大的联系。 这一事实使得降低计算成本和内存影响的关键问题复杂化, 在不需要精细网格的地方, 自动粗化网格, 仍然通过错误控制确保数字解决方案的整体质量。 这项工作为这个有趣的问题提供了可能的答案, 第一次将拉tice- Boltzmann 方法(LBMM)领域与基于波浪的适应性多分辨率(MR)方法(MR)领域连接起来。 为此, 我们使用MR多尺度变换, 以适应网格, 随着解决方案的本地规律性变化而随着时间变化而变化。 碰撞阶段不会因为其固有的本地性质而受到影响, 因为我们没有改变声音的速度, 与大多数LBM/Adaprition Mesh Refinetrial(AM) 战略(AMR) 领域, 从而保留任何LBMS计划的原始结构。 此外, 最初使用MRal- millalalalalalalalalalal alalalalalalal alalalalal eal dal eal preal preal preal preal laction preal laction preal preal laut laut the sal lautal lautal pal pal laut the sal sal lautal lax lautal lautal lax lax lautal lax lax lax lax lax lax lax lax lax lax lax lax laut the sal lax lax lax lax lax lautdal lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
庖丁解牛-图解MySQL 8.0优化器查询转换篇
阿里技术
0+阅读 · 2021年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
庖丁解牛-图解MySQL 8.0优化器查询转换篇
阿里技术
0+阅读 · 2021年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员