Real-time object pose estimation is necessary for many robot manipulation algorithms. However, state-of-the-art methods for object pose estimation are trained for a specific set of objects; these methods thus need to be retrained to estimate the pose of each new object, often requiring tens of GPU-days of training for optimal performance. In this paper, we propose the OSSID framework, leveraging a slow zero-shot pose estimator to self-supervise the training of a fast detection algorithm. This fast detector can then be used to filter the input to the pose estimator, drastically improving its inference speed. We show that this self-supervised training exceeds the performance of existing zero-shot detection methods on two widely used object pose estimation and detection datasets, without requiring any human annotations. Further, we show that the resulting method for pose estimation has a significantly faster inference speed, due to the ability to filter out large parts of the image. Thus, our method for self-supervised online learning of a detector (trained using pseudo-labels from a slow pose estimator) leads to accurate pose estimation at real-time speeds, without requiring human annotations. Supplementary materials and code can be found at https://georgegu1997.github.io/OSSID/
翻译:许多机器人操纵算法都需要实时对象的估算。然而,对于许多机器人操纵算法,需要实时天体的实时天体估计是有必要的。但是,对物体的最先进方法的估算是针对一组特定天体的培训;因此,需要对这些方法进行再培训,以估计每个新天体的构成情况,通常需要数十个GPU-日的培训才能优化性能。在本文中,我们提议了OSSID框架,利用一个缓慢的零射线显示测算器来自我监督快速检测算法的培训。然后,这个快速探测器可用于过滤向显示天体测算器输入的输入,大大改进了它的推断速度。我们表明,这种自我监督的培训超出了两种广泛使用的天体现有零射探测方法的性能,而不需要任何人文说明。此外,我们表明,由于能够将图像的大部分部分过滤出去,因此,由此产生的测算法速度要快得多。因此,我们自我监督的在线学习探测器的方法(从缓慢的估测算器中经过训练,大大地改进了它的推测速度。我们显示,这种自我监督的训练方法超出了两个广泛使用的天体物体的探测方法,在两个广泛使用的天体物体上需要任何人文/ASS/ASS/ASG/AD/ASG/SG/SG/AD/SG/SG/ID 的索引的精确估计。