Since the severe imbalanced predicate distributions in common subject-object relations, current Scene Graph Generation (SGG) methods tend to predict frequent predicate categories and fail to recognize rare ones. To improve the robustness of SGG models on different predicate categories, recent research has focused on unbiased SGG and adopted mean Recall@K (mR@K) as the main evaluation metric. However, we discovered two overlooked issues about this de facto standard metric mR@K, which makes current unbiased SGG evaluation vulnerable and unfair: 1) mR@K neglects the correlations among predicates and unintentionally breaks category independence when ranking all the triplet predictions together regardless of the predicate categories, leading to the performance of some predicates being underestimated. 2) mR@K neglects the compositional diversity of different predicates and assigns excessively high weights to some oversimple category samples with limited composable relation triplet types. It totally conflicts with the goal of SGG task which encourages models to detect more types of visual relationship triplets. In addition, we investigate the under-explored correlation between objects and predicates, which can serve as a simple but strong baseline for unbiased SGG. In this paper, we refine mR@K and propose two complementary evaluation metrics for unbiased SGG: Independent Mean Recall (IMR) and weighted IMR (wIMR). These two metrics are designed by considering the category independence and diversity of composable relation triplets, respectively. We compare the proposed metrics with the de facto standard metrics through extensive experiments and discuss the solutions to evaluate unbiased SGG in a more trustworthy way.


翻译:由于共同主题关系中严重不平衡的上游分布,当前Scene Grage Game(SGG)方法往往预测频繁的上游类别,而且不承认稀有类别。为了提高SGG模型在不同上游类别上的稳健性,最近的研究侧重于不偏向的SGG模型,并采用平均回调@K(mR@K)作为主要评价指标。然而,我们发现关于这种事实上的标准 mR@K的两个被忽视的问题,它使得当前不公正的SGG评价变得脆弱和不公平:(1) mR@K忽略了上游和无意间打破类别独立性之间的相互关系,将所有三重预测排列在一起,导致某些上游类别的预测表现被低估。(2) mR@K忽视了不同上游的构成多样性,对一些具有有限可调和关系类型的过于宽松的类别样本赋予了过高的重力。 与SGGGG任务的目标完全相矛盾,即鼓励模型发现更多的可视关系三重解决方案。 此外,我们调查了对象与上游之间在深度和上游之间的相关性下的相关性,这可以作为更简单但有力的标准基线,通过SGGRMR(我们讨论两种更精确的衡量标准) 和标准上更精确的标准化评估。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
32+阅读 · 2021年6月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
32+阅读 · 2021年6月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员