This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.
翻译:这项研究为个人化键盘生成引入了一种基于个人化键盘生成能力的方法,其中个人自己的移动和人-计算机互动数据被用于自动计算个性化虚拟键盘布局。我们的方法结合了多方向点选择任务,以辨别光标在时间、距离和方向上的控制特征。特征描述自动用于开发一种计算高效键盘布局,通过捕捉方向限制和偏好,确定每个用户的移动能力的优先次序。我们在一项涉及16名参与者的研究中评估了我们的方法,该研究使用惯性感和面部电感学作为访问方法,结果与通用优化键盘(47.9位/分)相比,个人个性化键盘(52.0位/分)的通信率大幅提高。我们的结果表明,能够有效地描述个人设计个人化键盘的能力,以设计个人化键盘改进通信。这项工作强调了在设计虚拟界面时整合用户的机动能力的重要性。