We introduce Interpolation Consistency Training (ICT), a simple and computation efficient algorithm for training Deep Neural Networks in the semi-supervised learning paradigm. ICT encourages the prediction at an interpolation of unlabeled points to be consistent with the interpolation of the predictions at those points. In classification problems, ICT moves the decision boundary to low-density regions of the data distribution. Our experiments show that ICT achieves state-of-the-art performance when applied to standard neural network architectures on the CIFAR-10 and SVHN benchmark datasets. Our theoretical analysis shows that ICT corresponds to a certain type of data-adaptive regularization with unlabeled points which reduces overfitting to labeled points under high confidence values.
翻译:我们引入了国际刑警一致性培训(ICT),这是在半监督的学习模式中培训深神经网络的一种简单和计算高效的算法。信通技术鼓励在不贴标签点的内插点进行预测,这与这些点的预测的内插一致。在分类问题中,信通技术将决定界限移到数据分布的低密度区域。我们的实验表明,信通技术在适用于CIFAR-10和SVHN基准数据集的标准神经网络结构时,达到了最先进的性能。我们的理论分析表明,信通技术与某种类型的数据适应性规范相对应,而未贴标签点则减少了与高信任值下标签点的过度匹配。