Partial Label (PL) learning refers to the task of learning from the partially labeled data, where each training instance is ambiguously equipped with a set of candidate labels but only one is valid. Advances in the recent deep PL learning literature have shown that the deep learning paradigms, e.g., self-training, contrastive learning, or class activate values, can achieve promising performance. Inspired by the impressive success of deep Semi-Supervised (SS) learning, we transform the PL learning problem into the SS learning problem, and propose a novel PL learning method, namely Partial Label learning with Semi-supervised Perspective (PLSP). Specifically, we first form the pseudo-labeled dataset by selecting a small number of reliable pseudo-labeled instances with high-confidence prediction scores and treating the remaining instances as pseudo-unlabeled ones. Then we design a SS learning objective, consisting of a supervised loss for pseudo-labeled instances and a semantic consistency regularization for pseudo-unlabeled instances. We further introduce a complementary regularization for those non-candidate labels to constrain the model predictions on them to be as small as possible. Empirical results demonstrate that PLSP significantly outperforms the existing PL baseline methods, especially on high ambiguity levels. Code available: https://github.com/changchunli/PLSP.
翻译:部分 Label (PL) 学习指的是从部分标签数据中学习的任务, 其中每个培训实例都模棱两可, 配有一套候选标签, 但只有一个是有效的。 最近的深层PL学习文献的进步表明, 深层次的学习模式, 如自我培训、 对比学习、 或类比激活值等, 可以取得有希望的成绩。 我们受到深层次半超级学习(SS) 成果的启发, 我们将PL学习问题转化成SS 学习问题, 并提出一种新的PL学习方法, 即 部分Label 学习, 配有一套半超导视野(PLSP ) 。 具体地说, 我们首先通过选择少量可靠的伪标签化数据集, 配有高信任预测分, 并将其余实例作为假标签值的范例处理。 然后我们设计一个SS 学习目标, 包括受监督的伪标签实例损失, 和伪无标签实例的语义一致性规范。 我们还为这些非认证标签引入了补充的规范, 以限制模型预测成为小的 PLPL/ 基础 。 Eprest SP shormagres progill 。 ex ex lap ex laus ex laus laus ex ex laus ex ex ex laus ex ex ex ex ex ex ex ex subilus subilus ex ex ex subil ex subil ex ex subilusional sution subilve ex subilus lections aminubil ex ex ex sublevelubil subil ex pas ex pal exprprive ex pal ex pal ex ex ex lements amin pal lements apreving subil