Change and its precondition, variation, are inherent in languages. Over time, new words enter the lexicon, others become obsolete, and existing words acquire new senses. Associating a word's correct meaning in its historical context is a central challenge in diachronic research. Historical corpora of classical languages, such as Ancient Greek and Latin, typically come with rich metadata, and existing models are limited by their inability to exploit contextual information beyond the document timestamp. While embedding-based methods feature among the current state of the art systems, they are lacking in the interpretative power. In contrast, Bayesian models provide explicit and interpretable representations of semantic change phenomena. In this chapter we build on GASC, a recent computational approach to semantic change based on a dynamic Bayesian mixture model. In this model, the evolution of word senses over time is based not only on distributional information of lexical nature, but also on text genres. We provide a systematic comparison of dynamic Bayesian mixture models for semantic change with state-of-the-art embedding-based models. On top of providing a full description of meaning change over time, we show that Bayesian mixture models are highly competitive approaches to detect binary semantic change in both Ancient Greek and Latin.
翻译:变化及其先决条件, 变化是语言所固有的。 随着时间的推移, 新的词会进入词汇表, 其它的则变得过时, 现有的词会获得新的感官。 将一个词在历史背景中的正确含义结合在一起, 是历史研究中的一项中心挑战。 古希腊和拉丁等古典语言的历史团体, 通常都有丰富的元数据, 而现有的模型由于其无法在文件时间戳之外利用背景信息而受到限制。 在现代艺术体系中存在基于嵌入的方法, 但它们缺乏解释力。 相反, 巴伊西亚模型提供了明确和可解释的语义变化现象的表达方式。 在本章中,我们建立在GASC上, 一种基于动态的巴伊斯混合模型的最近计算方法。 在这个模型中, 单词感随着时间的演变不仅基于传播信息, 而且还基于文字流源。 我们系统地比较了动态的巴耶斯混合模型, 与基于我们时代嵌入的模型相比, 提供了清晰和可解释性模型的解析性模型。 在高层次的希腊混合模型中, 展示了一种具有高度竞争力的代号的模型。