Recommendation systems (RSs) are skilled at capturing users' preferences according to their history interactions with items, while the RSs usually suffer from the sparsity of user-item interactions. Thus, various auxiliary information is introduced to alleviate this problem. Due to powerful ability in modeling auxiliary information, the heterogeneous information network (HIN) is widely applied to the RSs. However, in existing methods, the process of information extraction from various meta-paths takes no consideration of graph structure and user/item features simultaneously. Moreover, existing models usually fuse the information from various meta-paths through simply weighted summation, while ingore the interest compositions intra- and inter-meta-paths which is capable of applying abundant high-order composition interests to RSs. Therefore, we propose a HIN-based Interest Compositions model with graph neural network for Recommendation (short for HicRec). Above all, our model learns users and items representations from various graphs corresponding to the meta-paths with the help of the graph convolution network (GCN). Then, the representations of users and items are transformed into users' interests on items. Lastly, the interests intra- and inter-meta-paths are composed and applied to recommendation. Extensive experiments are conducted on three real-world datasets and the results show that the HicRec outperforms various baselines.
翻译:建议系统(RSs)掌握技能,能够根据用户与项目的历史互动来捕捉用户的偏好,而RSs通常会因用户-项目互动的广度而受害。因此,引入了各种辅助信息以缓解这一问题。由于模拟辅助信息的强大能力,混合信息网络(HIN)被广泛应用于RSs。但是,在现行方法中,从各种元路径提取信息的过程没有同时考虑图表结构和用户/项目特征。此外,现有的模型通常通过简单的加权加和将各种元路径的信息通过简单的加权加和将信息从各种元路径中整合起来,同时将利益成分从内部和元路径中引入,从而能够将大量高顺序构成的利益成分应用到RSs。因此,我们提出了一个基于基于HIN的利益构成模型,配有建议(HicRec)的图形神经网络。最重要的是,我们的模型在图形变相网络(GCN)的帮助下,从与元路径相对应的各种图表(GCN)对应的各种图表中学习用户和项目。然后,用户和物品的表述被转换成用户利益成分,在用户之间应用到对用户的高度结构构成利益,最后,在内部和实验中进行各种试验。在数据库中进行的各种利益和实验中,是各种试验。在各种实验中,在各种实验中进行各种试验。在各种实验中进行各种试验。