Ultra sparse-view computed tomography (CT) algorithms can reduce radiation exposure of patients, but those algorithms lack an explicit cycle consistency loss minimization and an explicit log-likelihood maximization in testing. Here, we propose X2CT-FLOW for the maximum a posteriori (MAP) reconstruction of a three-dimensional (3D) chest CT image from a single or a few two-dimensional (2D) projection images using a progressive flow-based deep generative model, especially for ultra low-dose protocols. The MAP reconstruction can simultaneously optimize the cycle consistency loss and the log-likelihood. The proposed algorithm is built upon a newly developed progressive flow-based deep generative model, which is featured with exact log-likelihood estimation, efficient sampling, and progressive learning. We applied X2CT-FLOW to reconstruction of 3D chest CT images from biplanar projection images without noise contamination (assuming a standard-dose protocol) and with strong noise contamination (assuming an ultra low-dose protocol). With the standard-dose protocol, our images reconstructed from 2D projected images and 3D ground-truth CT images showed good agreement in terms of structural similarity (SSIM, 0.7675 on average), peak signal-to-noise ratio (PSNR, 25.89 dB on average), mean absolute error (MAE, 0.02364 on average), and normalized root mean square error (NRMSE, 0.05731 on average). Moreover, with the ultra low-dose protocol, our images reconstructed from 2D projected images and the 3D ground-truth CT images also showed good agreement in terms of SSIM (0.7008 on average), PSNR (23.58 dB on average), MAE (0.02991 on average), and NRMSE (0.07349 on average).


翻译:超稀薄计算断层成像算法可以减少病人的辐射照射, 但是这些算法缺乏明确的周期一致性损失最小化和测试中清晰的逻辑类比最大化。 在这里, 我们建议从一个或几个二维(2D)投影模型中重建三维( 3D) 胸部成像, 特别是用于超低剂量协议。 MAP 重建可以同时优化周期一致性损失和日志相似性。 拟议的算法是在新开发的基于流基的深度变异模型上建立起来的。 这个模型的特点是精确的日志类比值估计、高效采样和渐进学习。 我们用 X2CT 立方立方形图像来重建三维胸部成像,没有噪音污染(假设标准剂量协议)和强烈的噪音污染(假设超低剂量协议 ) 。 在标准剂量协议中, 我们的图像从2D- IM 和 3DLOV 的底值 比例( 0. 0D) 图像根据正值平均的 IM 标准, 在 mal- sal- deal ral deal deal deal deal deal deal deal deal deal deal deal deal 上( 23 sal sal sal deal sal sal deal sal sal deal sal sal sal sal sal sal sal sal sal sal sal sal sal de sal de sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal de sal de sal de sal de sal de ex sal de sal de sal de sal de sal de sal de sal de sal de. sal de sal de sal de sal sal sal sal sal sal sal de sm sm sm ex sal sal sal sal sal de sal de sm ex. sal sal sal sal sal sal de sal sal sal sal de sal de sal de sal de sal sal sal sal de sal sal sal de sal ex. sal de sal de sal de s

1
下载
关闭预览

相关内容

生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
149+阅读 · 2020年12月30日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员