The use of low-resolution images adopting more relaxed acquisition conditions such as mobile phones and surveillance videos is becoming increasingly common in iris recognition nowadays. Concurrently, a great variety of single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs). The main objective of these methods is to try to recover finer texture details generating more photo-realistic images based on the optimisation of an objective function depending basically on the CNN architecture and training approach. In this work, the authors explore single image super-resolution using CNNs for iris recognition. For this, they test different CNN architectures and use different training databases, validating their approach on a database of 1.872 near infrared iris images and on a mobile phone image database. They also use quality assessment, visual results and recognition experiments to verify if the photo-realism provided by the CNNs which have already proven to be effective for natural images can reflect in a better recognition rate for iris recognition. The results show that using deeper architectures trained with texture databases that provide a balance between edge preservation and the smoothness of the method can lead to good results in the iris recognition process.
翻译:使用低分辨率图像,采用更宽松的获取条件,例如移动电话和监视录像,在目前爱丽丝认知中越来越普遍。与此同时,正在出现各种单一图像超分辨率技术,特别是使用神经神经网络(CNNs),这些方法的主要目的是试图恢复精细的纹理细节,根据对目标功能的优化(基本上取决于CNN的架构和培训方法),产生更符合摄影现实的图像。在这项工作中,作者探索使用CNN来探索单一图像超级分辨率,以便识别iris。为此,他们测试了不同的CNN结构,并使用不同的培训数据库,在接近红外线图像的1.872数据库和移动电话图像数据库中验证了他们的方法。他们还使用质量评估、视觉结果和识别实验,以核实已经证明对自然图像有效的CNN提供的摄影现实主义是否能够反映更好的识别率。结果显示,使用经Tyure数据库培训的更深层结构,在边缘保护与方法的光滑度之间保持平衡,可以导致识别过程的良好结果。