Semilinear maps are a generalization of linear maps between vector spaces where we allow the scalar action to be twisted by a ring homomorphism such as complex conjugation. In particular, this generalization unifies the concepts of linear and conjugate-linear maps. We implement this generalization in Lean's \textsf{mathlib} library, along with a number of important results in functional analysis which previously were impossible to formalize properly. Specifically, we prove the Fr\'echet--Riesz representation theorem and the spectral theorem for compact self-adjoint operators generically over real and complex Hilbert spaces. We also show that semilinear maps have applications beyond functional analysis by formalizing the one-dimensional case of a theorem of Dieudonn\'e and Manin that classifies the isocrystals over an algebraically closed field with positive characteristic.
翻译:半线性地图是矢量空间之间线性地图的概括化,我们允许通过环形同质性(如复杂的同系物)来扭曲星标动作。 特别是, 这种概括化统一了线性和同系线性地图的概念。 我们在Lean 的 extextsf{mathlib} 库中实施这种概括化, 以及在功能分析中取得若干重要结果, 这些结果以前是无法正确正规化的。 具体地说, 我们证明Fr\' echet- Riesz 代表着一个具有积极特征的代数封闭域的浮点和光谱理论, 用于小型自我联合操作者对真实和复杂的希尔伯特空间的一般自我联合操作。 我们还表明, 半线性地图除了功能分析之外, 还可以将Dieudonn\ e 和 Manin 的一维维度理论的一维度案例正规化, 将其归为具有积极特性的代数封闭域。