A merger of two optimization frameworks is introduced: SEquential Subspace OPtimization (SESOP) with MultiGrid (MG) optimization. At each iteration of the algorithm, the search direction implied by the coarse-grid correction process of MG is added to the low dimensional search-space of SESOP, which includes the preconditioned gradient and search directions involving the previous iterates, called {\em history}. Numerical experiments demonstrate the effectiveness of this approach. We then study the asymptotic convergence factor of the two-level version of SESOP-MG (dubbed SESOP-TG) for optimization of quadratic functions, and derive approximately optimal fixed parameters, which may reduce the computational overhead for such problems significantly.


翻译:引入了两个优化框架的合并: 二次空间优化( SESOP) 和多格里德优化( MG) 。 在算法的每一次迭代中, MG 粗格校正过程所隐含的搜索方向被添加到 SESOP 的低维搜索空间中, 其中包括前一次迭代( 称为 \ em历史 ) 的前提条件梯度和搜索方向 。 数字实验证明了这一方法的有效性 。 然后我们研究了 SESOP- MG ( dubbbed SESOP- TG) 两级优化四边形功能的无症状趋同系数, 并得出了大约最佳的固定参数, 这可能会显著减少此类问题的计算间接费用 。

0
下载
关闭预览

相关内容

【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
231+阅读 · 2020年6月5日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员