Resources in high-resource languages have not been efficiently exploited in low-resource languages to solve language-dependent research problems. Spanish and French are considered high resource languages in which an adequate level of data resources for informal online social behavior modeling, is observed. However, a machine translation system to access those data resources and transfer their context and tone to a low-resource language like dialectal Arabic, does not exist. In response, we propose a framework that localizes contents of high-resource languages to a low-resource language/dialects by utilizing AI power. To the best of our knowledge, we are the first work to provide a parallel translation dataset from/to informal Spanish and French to/from informal Arabic dialects. Using this, we aim to enrich the under-resource-status dialectal Arabic and fast-track the research of diverse online social behaviors within and across smart cities in different geo-regions. The experimental results have illustrated the capability of our proposed solution in exploiting the resources between high and low resource languages and dialects. Not only this, but it has also been proven that ignoring dialects within the same language could lead to misleading analysis of online social behavior.
翻译:暂无翻译