Motivated by applications in machine learning and archival data storage, we introduce function-correcting codes, a new class of codes designed to protect a function evaluation on the data against errors. We show that function-correcting codes are equivalent to irregular distance codes, i.e., codes that obey some given distance requirement between each pair of codewords. Using these connections, we study irregular distance codes and derive general upper and lower bounds on their optimal redundancy. Since these bounds heavily depend on the specific function, we provide simplified, suboptimal bounds that are easier to evaluate. We further employ our general results to specific functions of interest and we show that function-correcting codes can achieve significantly less redundancy than standard error-correcting codes which protect the whole data.
翻译:在机器学习和档案数据存储应用的推动下,我们引入了功能校正代码,这是一套新的代码,旨在保护对数据进行功能评估以防错误。我们显示功能校正代码等同于不规则的远程代码,即遵守每对编码词之间某种特定距离要求的代码。我们使用这些连接,研究非常规的距离代码,并得出其最佳冗余的一般上下限。由于这些界限在很大程度上取决于特定功能,我们提供了简化的、次优的、易于评估的界限。我们进一步将我们的一般结果用于特定的兴趣功能,我们显示功能校正代码的冗余程度远远低于保护整个数据的标准错误校正代码。