In this paper, we specify what functions induce the bounded composition operators on a reproducing kernel Hilbert space (RKHS) associated with an analytic positive definite function defined on $\mathbf{R}^d$. We prove that only affine transforms can do so in a pretty large class of RKHS. Our result covers not only the Paley-Wiener space on the real line, studied in previous works, but also much more general RKHSs corresponding to analytic positive definite functions where existing methods do not work. Our method only relies on an intrinsic properties of the RKHSs, and we establish a connection between the behavior of composition operators and the asymptotic properties of the greatest zeros of orthogonal polynomials on a weighted $L^2$-spaces on the real line. We also investigate the compactness of the composition operators and show that any bounded composition operators cannot be compact in our situation.
翻译:在本文中, 我们指定了哪些功能, 促使受约束的构成操作者在复制与以$\ mathbf{R ⁇ d$定义的分析正数确定函数相关的核心Hilbert空间( RKHS) 上产生约束的构成操作者。 我们证明, 只有在相当大等级的RKHS 中, 方形变异才能产生效果。 我们的结果不仅包含在真实线上的帕利- Winer空间, 在先前的作品中研究过, 而且还包含与分析式正数函数相对的更一般的RKHS 功能, 如果现有方法不起作用。 我们的方法只依赖于 RKHS 的内在特性, 我们把组成操作者的行为和在加权的 $L ⁇ 2$- 实际线上, 方形多形多形多色体的最大零的无损特性联系起来。 我们还调查了组成操作者的紧凑性, 并表明任何受约束的构成操作者在我们的状态下都无法保持紧密性 。