Effective control and prediction of dynamical systems often require appropriate handling of continuous-time and discrete, event-triggered processes. Stochastic hybrid systems (SHSs), common across engineering domains, provide a formalism for dynamical systems subject to discrete, possibly stochastic, state jumps and multi-modal continuous-time flows. Despite the versatility and importance of SHSs across applications, a general procedure for the explicit learning of both discrete events and multi-mode continuous dynamics remains an open problem. This work introduces Neural Hybrid Automata (NHAs), a recipe for learning SHS dynamics without a priori knowledge on the number of modes and inter-modal transition dynamics. NHAs provide a systematic inference method based on normalizing flows, neural differential equations and self-supervision. We showcase NHAs on several tasks, including mode recovery and flow learning in systems with stochastic transitions, and end-to-end learning of hierarchical robot controllers.
翻译:动态系统的有效控制和预测往往需要适当处理连续时间和离散、事件触发的过程。跨工程领域通用的软体混合系统(SHS)为受离散、可能随机、状态跳跃和多模式连续时间流影响的动态系统提供了一种形式主义。尽管SHS在各种应用中具有多功能性和重要性,但明确了解离散事件和多模式连续动态的一般程序仍然是一个未解决的问题。这项工作引入了神经复合自动自动数据(NHAs),这是学习SHS动态的食谱,没有事先了解模式和模式间过渡动态的数量。NHAs提供了一种基于正常流动、神经差异方程式和自视的系统推论方法。我们向NHAs展示了几项任务,包括模式的恢复和在具有随机过渡的系统中的循环学习,以及从上层机器人控制器的端到端学习。