An important component of autoencoders is the method by which the information capacity of the latent representation is minimized or limited. In this work, the rank of the covariance matrix of the codes is implicitly minimized by relying on the fact that gradient descent learning in multi-layer linear networks leads to minimum-rank solutions. By inserting a number of extra linear layers between the encoder and the decoder, the system spontaneously learns representations with a low effective dimension. The model, dubbed Implicit Rank-Minimizing Autoencoder (IRMAE), is simple, deterministic, and learns compact latent spaces. We demonstrate the validity of the method on several image generation and representation learning tasks.
翻译:自动编码器的一个重要组成部分是将潜在代表的信息能力降到最低或限制程度的方法。在这项工作中,代码的共变矩阵的级别被暗含地缩小,因为依赖多层线性网络的梯度下降学习导致最低程度的解决方案。通过在编码器和解码器之间插入若干额外的线性层,系统自发地学习低有效维度的表达方式。模型被称为隐性内分层自动编码器(IRMAE),是简单、决定性的,并学习紧凑的潜在空间。我们展示了该方法对于若干图像生成和代表式学习任务的有效性。