Lorenzen's "Algebraische und logistische Untersuchungen \"uber freie Verb\"ande" appeared in 1951 in The journal of symbolic logic. These "Investigations" have immediately been recognised as a landmark in the history of infinitary proof theory, but their approach and method of proof have not been incorporated into the corpus of proof theory. More precisely, Lorenzen proves the admissibility of cut by double induction, on the cut formula and on the complexity of the derivations, without using any ordinal assignment, contrary to the presentation of cut elimination in most standard texts on proof theory. This translation has the intent of giving a new impetus to their reception. The "Investigations" are best known for providing a constructive proof of consistency for ramified type theory without axiom of reducibility. They do so by showing that it is a part of a trivially consistent "inductive calculus" that describes our knowledge of arithmetic without detour. The proof resorts only to the inductive definition of formulas and theorems. They propose furthermore a definition of a semilattice, of a distributive lattice, of a pseudocomplemented semilattice, and of a countably complete boolean lattice as deductive calculuses, and show how to present them for constructing the respective free object over a given preordered set. This translation is published with the kind permission of Lorenzen's daughter, Jutta Reinhardt.
翻译:1951年《 符号逻辑 》 杂志上出现了Lorenzen 的“ 模拟理论” 。 这些“ 调查” 立刻被公认为是无限证据理论史上的一个里程碑, 但是它们的方法和举证方法并没有被纳入证据理论。 更确切地说, Lorenzen 证明, 可以通过双重感应、 剪裁公式 和 出产的复杂性 进行剪辑, 而不使用任何正统任务, 这与大多数标准文本中关于证据理论的缩略译相反。 这个翻译的目的是为接收它们提供新的动力。 “ 调查” 最能被公认为是提供了一种建设性的证据, 来证明被拉动的理论的一致性, 而没有令人信服的。 他们证明,这是“ 隐含性的评分” 的一部分, 用来描述我们所理解的算术, 而不使用任何正统任务。 证据只用来证明公式的缩略性定义的完整, 和彩色的缩略图, 进一步提出一个“ ” 隐含的缩图的缩图 定义。